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Non-line-of-sight (NLOS) imaging is an emerging technique for detecting objects behind obstacles or around corners.
Recent studies on passive NLOS mainly focus on steady-state measurement and reconstruction methods, which show lim-
itations in recognition of moving targets. To the best of our knowledge, we propose a novel event-based passive NLOS
imaging method. We acquire asynchronous event-based data of the diffusion spot on the relay surface, which contains
detailed dynamic information of the NLOS target, and efficiently ease the degradation caused by target movement. In addi-
tion, we demonstrate the event-based cues based on the derivation of an event-NLOS forward model. Furthermore, we
propose the first event-based NLOS imaging data set, EM-NLOS, and the movement feature is extracted by time-surface
representation. We compare the reconstructions through event-based data with frame-based data. The event-based
method performs well on peak signal-to-noise ratio and learned perceptual image patch similarity, which is 20% and
10% better than the frame-based method.

Keywords: non-line-of-sight imaging; event camera; event-based representation.
DOI: 10.3788/COL202321.061103

1. Introduction

Non-line-of-sight (NLOS) imaging has attracted great attention
with its widespread potential applications in object detection,
autonomous driving, and anti-terrorist reconnaissance[1–3].
According to whether a controllable light source is used,
NLOS imaging is classified as active NLOS imaging[4,5] and pas-
sive NLOS imaging[6,7].
Passive NLOS imaging shows promising application and

research prospects due to its simple device and convenient data
acquisition. However, the NLOS problem is known as an inverse
problem in mathematics, and we need to perform blind decon-
volution, which is time-consuming and computationally bur-
dened. Consequently, light-cone transform theory using
matrix inverse[8], back projection algorithm based on photon
time-of-flight information[9], and wave-based phasor field
approach[10] are proposed successively. But few of these meth-
ods perform well in passive NLOS moving target reconstruction
because the steady-state detection mode of passive NLOS suffers
from serious degradation of the diffusion spot on the relay sur-
face[11] and the superposition effect of isotropic diffuse reflection

by close pixels[12]. Currently, speckle coherence restoration[13]

and intensity-based data-driven reconstruction methods[14,15]

are used to solve the ill-posed passive NLOS imaging dilemma.
Since the movement of the target induces motion blur to the
intensity distribution on the relay surface and superposes with
the obscurity caused by diffusion[16], the current end-to-end
deep-learning approach[11,17] performs well only on static
NLOS targets[18] but shows defects in reconstruction quality
for moving targets. In contrast, to realize high quality and effi-
cient reconstruction, we deduce the event form detection-for-
ward model of passive NLOS and establish the event-based
inverse problem, on the basis of which we first put forward
the event cues for passive NLOS moving target reconstruction.
In this way, the dynamic information of the intensity diffusion is
precisely captured by the event detection paradigm.

2. Principle and Methods

In this section, we present the working principle of the event
camera and then explain the inverse problem setup by derivation
of the forward model in passive NLOS imaging.
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2.1. Event-based vision

The event camera[19], known as a novel neuromorphic vision
device, only responds to brightness changes per pixel asynchro-
nously, while traditional frame-based cameras measure absolute
brightness at a fixed rate. The record paradigm of event-based
vision provides high temporal resolution, high dynamic range,
and low power consumption[20]. Therefore, it finds great poten-
tial in challenging scenarios for standard cameras, such as high
speed, high dynamic range imaging[21], or object detection[22] in
a slightly changing optical field.
The working principle of the event camera is illustrated in

Fig. 1. When the logarithmic intensity of the brightness changes
reaches the trigger threshold, the pixel will be triggered and
recorded as an event. Each pixel records the logarithmic form
of the intensity when an event is fired and continuously mon-
itors for sufficient amplitude changes based on this stored value.
The event is described by four characteristic parameters: t
describes the time stamp of the fired event, which records the
moment when the logarithmic value of the intensity changes
exceeds the threshold; x, y describes the spatial address of the
pixel where the event is fired, respectively; p describes the reason
for the excitation of the event, and increase or decrease in bright-
ness, respectively.
Data collected by an event camera are recorded in the form of

four characteristic parameters, time stamp t, spatial address x, y,
and polarity flag p. The ith event is noted as evi,

evi = �ti, xi, yi, pi�T , i ∈ N: �1�

2.2. Forward model of passive NLOS

The forward model of NLOS is a modeling expression of the
light transport in data collecting, which could be regarded as
the inverse process of NLOS imaging. It makes up of the theo-
retical basis of NLOS reconstruction from the scope of steady-
state imaging and derivation.
The intensity of the diffusion spot on the relay surface[23]

could be expressed as

I�py� =
ZZ

pf∈F
A�pf , py� · I�pf �dpf � N , (2)

where I�py� represents the intensity distribution in the field of
view (FoV) on the relay surface, I�pf � represents the intensity
of the self-luminous target, N represents the summation of
the ambient light noise and random noise in detection, and
A�pf , py� stands for the point-to-point transmission process[23],
which could be specialized as

A�pf , py� =
cos�∠�py!− pf

!,npf
��!�� · cos�∠�pf!− py

!,npy
��!��

kpy!− pf
!k2

2

· μ�pf , py�,

(3)

where ∠�py!− pf
!, npf

��!� and ∠�pf!− py
!, npy

��!� donate the angle
between the vector formed by the monitor pixel and the light
source with the normal vector of each of their located plane, cor-
respondingly. The cosine function of these two angles character-
izes the effect on optical transmission by geometric relations.
The Euclidean norm is used to quantify the attenuation of range.
We assume that the relay surface can be approximately modeled
as isotropic diffuse reflection, and coefficient μ, which describes
the effect of the bidirectional reflectance distribution function
(BRDF), is a constant. We substitute Eq. (3) into Eq. (2), and
present the pixel-wise detection function on the relay surface[11],

I�py� =
ZZ

pf∈F

cos�∠�py!− pf
!, npf

��!�� · cos�∠�pf!− py
!, npy

��!��
kpy!− pf

!k2
2

· μ · I�pf �dpf � N , (4)

which could be simplified as

y = Af � N: �5�
The detection function of diffusion on the relay surface could

be written in the form of the matrix,

2
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2
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. ..
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If ,1

..

.

If ,H×W

3
7775�N ,

(6)

where the intensity of pixel i in the FoV is expressed by the ele-
ments Iy,i, while If ,i represents the intensity of pixel i of the self-
luminous target. The transmission matrix A is discretized as Ai,j,
and h × w, H ×W are the pixel range for FoV and target,
respectively.

2.3. Event-based reconstruction method

In our work, we adopt the event cues to extract the movement
information and texture feature of the targets. Themost intuitive

Fig. 1. Schematic of events excitation with changes in brightness at pixel level.
The red arrow stands for a fired positive event, while the green arrow stands
for the negative one.
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representation of the dynamic information on the relay surface
is the origin event data. However, as addressed in Eq. (1), an
event is composed of the triggered time stamp, spatial address,
and polarity flag, which belong to three different data formats,
respectively. As a result, it is critical to convert the sparse 4D
event points into a featured tensor that contains both temporal
and spatial characteristics. Therefore, we adopt the time-sur-
face[24] method to represent the event-based data and extract
the featured diffusion spot, which contains rich information
on the target movement.
We visualize the event-based data to demonstrate their rep-

resentations. The relay surface is selected as a mirror for clear
visualization. The target “A” is moving from left to right in
the FoV, as shown in Fig. 2.
In Fig. 2(b), the frame-based image is captured by a traditional

camera, while Fig. 2(c) shows the asynchronous events captured
by an event camera, consisting of 3D scatter points, which re-
present the parameters x, y, and t, in which red stands for pos-
itive polarity and blue stands for negative polarity. We select a
short time interval as the temporal length of the voxel grid and
plot the time-surface 3D map with the time-surface calcula-
tion[24], which contains both temporal and spatial correlations
of the selected events, as shown in Fig. 2(e). If we normalize
the time-surface value of each spatial address, project it into
xoy plane, and display it in the form of gray-scale intensity,
we could express the spatiotemporal correlation information
in the form of an event address map[25,26], as shown in Fig. 2(d).
Based on the detection function in Eq. (6), we represent the

intensity of pixel i in the FoV at the current moment by elements
Iy,i in the matrix, while I 0y, i represent the intensity of pixel i at the
center time stamp of the adjacent voxel grid. According to the
working principle of the event camera, we establish the event-
based detection function by performing a difference operation
to I 0y, i and Iy,i, as shown,

2
666664

I 0y, 1 − Iy,1
I 0y, 2 − Iy,2

..

.

I 0y, h×w − Iy,h×w

3
777775 = A

2
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I 0f , 1 − If ,1
I 0f , 2 − If ,2

..

.

I 0f ,H×W − If ,H×W

3
777775� N 0 − N , (7)

and the intensity of the brightness changes at pixel i is
expressed as

I 0y, i − Iy,i = �Ai,1 Ai,2 · · · Ai,H×W � lim
Δt→t0

· Δf � Nr

= �Ai,1 Ai,2 · · · Ai,H×W �

2
6666664

Imf , 1
Imf , 2

..

.

Imf ,H×W

3
7777775
� Nr , (8)

where t0 is the time interval between two adjacent voxel grids,
and we use the limitation form to show the accumulation of
the target intensity changes at pixel i during t0, which can be
written as Imf , i, containing the movement information on the tar-

get. The noise caused by ambient light is also counteracted by the
sampling principle of event-based detection, and only random
noise remains, i.e., Nr = N 0 − N .
Then, we utilize the step function Fire�I 0y − Iy� to discriminate

whether an event is fired. As shown in Fig. 3, when the difference
value of intensity exceeds the threshold and falls in the red or
blue area, an event is recorded at that pixel and out-
puts �ti, xi, yi, pi�.
After extracting the dynamic information on the diffusion

spot movements, we put forward an event-embedded frame-
work that fuses the extracted event features with a UNet struc-
ture to solve the inverse problem. As shown in Fig. 4, we display
a video containing a parallel moving target with a smartphone,
and leverage the event-based vision to record the dynamic dif-
fusion spot on the relay surface.
We perform a time-surface calculation on the voxel grid[21] to

extract the featured diffusion spot and represent event data at
different time intervals by a series of 2D intensity images.
Time-surface[24] is expressed by

Si�ρ, p� = e−�ti−Ti�ρ, p��=τ, (9)

where Si is the time-surface value of evi, which is defined by
applying an exponential decay kernel with time constant τ on
the values of the context time stamp Ti�ρ, p�, where p is the
polarity flag. Ti is defined to represent the time-context infor-
mation around an incoming event evi as the array of most recent

Fig. 2. Representations of event-based data. Fig. 3. Discrimination function of fired event.
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events times at ti for the neighboring pixels in the adjacent area
with the radius of ρ,

Ti�ρ, p� =max
j≤i

ftjjrj = ri � ρ, pi = pg: (10)

According to the assumption that the fired events of the adja-
cent voxel grids share a similar spatial address, the spatial
address of the fired event stream is highly correlated. As a result,
when we perform a time-surface calculation on the acquired
event data in a voxel grid, the context information on the move-
ments is accumulated. Then, the temporal and spatial features of
the moving target can be expressed by

Emap = S

� X
y∈FoV,Δt→t0

Fire�I 0y − Iy�
�
= B · f , (11)

where Fire(·) is referred to in Fig. 3, S stands for the time-surface
representation, and B is the counterpart of A.
The event-based inverse problem is established by

f = B−1 · Emap: �12�
A typical solution of this reconstruction is using optimal

methods to solve the matrix inverse of B, as shown,

f = argmin
f

kBf − Emapk22 � J , �13�

where J donates the a priori, which is obtained by the asynchro-
nous sampling paradigm of the event camera.
However, the condition number of matrix B is relatively large

due to the pixel-wise mutual interference, resulting in the low
rank of matrix B. Also, iteratively solving the calculation of
B−1 is time-consuming. For the last step of solving the inverse
problem in NLOS reconstruction, we employ a UNet structure,
use skip connection to perform multiscale feature fusion, and
add a residual block to avoid gradient explosion when training.

3. Experimental Setups

For the experimental proof of the event-based approach, we
constructed experimental setups, as shown in Fig. 5. We
displayed a video that provided the self-luminous moving
target in the NLOS region of the event camera, blocked by
the obstacle. The moving diffusion spot on the relay surface is
recorded by the event camera (CeleX-V) in Section 1 of the
Supplementary Material and Visualization 1.

The targets used in the experiment contain characters of
number digits selected from theMNIST training set, MNIST test
set, and PRINT test set (Arial font numbers), with the size of
3 cm × 3 cm, which are placed 25 cm away from the frosted alu-
minum fender.
We select 14 different kinds of characters for each digit

(0–9) in the MNIST training set and test set, and then acquire
both event-based data and frame-based data with different
modes of the CeleX-V camera. The self-luminous target dis-
played by the smartphone translates from left to right in the FoV
at a preset speed of 2.5 cm/s. When recording the moving dif-
fusion spot in full-picture (F) mode, we get series of screenshots
in different positions with the frame rate of 100 frames per sec-
ond, while in event-intensity (EI) mode, we get a stream of
event-based data of the diffusion spot movement. Data collected
by these two modes are calibrated to the ground truth by the
time stamp and made into image format data sets event
MNIST NLOS (EM-NLOS) and frame MNIST NLOS (FM-
NLOS), correspondingly.
To the best of our knowledge, we first established the EM-

NLOS data set, which contains 4080 images in the training
set and validation set and 210 images in the test set. The training
set is made up of 3950 featured events. The time-surfacemap has
130 targets (13 groups, 0–9) at different positions, while the val-
idation set contains 130 images. The test set consists of 110
images with 10 digits (0–9) selected from the MNIST test
set and 100 images with 10 digits (0–9) in Arial font. As the
counterpart, FM-NLOS contains the corresponding frame-
based intensity diffusion spot movement, with 4180 images in
total. We compare the training results on EM-NLOS and FM-
NLOS, which are noted as an event-based method (E method)
and a frame-based method (F method), respectively. The
reconstruction accuracies of the F method and the E method
on the MNIST test set and the PRINT test set are shown and
compared in Fig. 6.
We trained our residual-UNet (R-UNet) on the EM-NLOS

training set with an adaptive moment (Adam) estimation opti-
mizer with Nvidia RTX 3090 GPU for 800 epochs. To achieve
fair comparisons, we trained the R-UNet on the FM-NLOS
training set with the same configuration[17]. The structure of
our R-UNet and training parameters are given in Section 2 of
the Supplementary Material.

Fig. 5. Experimental setup. (a) Basic principle of our NLOS scene;
(b) experimental settings; the self-luminous target is a video with moving
digits.

Fig. 4. Flow chart of event-embedded passive NLOS imaging.
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4. Experimental Results and Discussions

The reconstruction quality of the moving target is assessed from
two perspectives: the visual reconstruction quality and the posi-
tion accuracy. For the former, we introduce the peak signal-
to-noise ratio (PSNR) and learned perceptual image patch
similarity (LPIPS)[27] to evaluate the reconstructions. The
reconstruction accuracies of the F method and the E method
on the MNIST test set and the PRINT test set are shown and
compared in Figs. 6(a) and 6(b), respectively. It is obvious that
the proposed E method with event-based data shows much
better reconstruction quality than the F method, especially in
recognizing the digits.
As for the position accuracy, we define the index contour dis-

tance (Cd) to measure the position of the reconstructions. The
Cd value is evaluated by the average distance between the left
edge and the digit left contour (made up by first pixels with a
gray scale of 255 in each row after image binarization). Digit
7 in theMNIST test set and digit 3 in the PRINT test set are dem-
onstrated as examples in this Letter. As shown in Fig. 7, the
reconstruction by the E method is closer to ground truth than
that of the F method. The average Cd deviation of the E method
is far smaller than that of the F method, as shown in Fig. 8.
Furthermore, the visual reconstruction accuracy of the E

method is also intuitively higher than that of the F method.
One can see from Fig. 9 that the E method evidently performs
better on both of the twometrics, indicating that the event-based
approach exceeds the frame-based method under the same data
set size and network structure.
We statistically analyze the reconstruction accuracy indexes

of 10 digits in both the MNIST test set and the PRINT test
set at different positions. The average LPIPS and PSNR of each

reconstructed frame for different test digits with the E method
and the Fmethod are shown in Table 1, respectively. One can see
from Table 1 that the reconstruction LPIPS obtained by the E
method is 38% and 11% lower than by the F method on the
two test sets, respectively, which demonstrate the higher quality

Fig. 6. (a) Part of the reconstruction results for the PRINT test set in both EM-NLOS and FM-NLOS; (b) part of the reconstruction results for the MNIST test set in
both EM-NLOS and FM-NLOS.

Fig. 7. Reconstructions of NLOS moving target at different positions through
the E method and the F method. Six different positions of digit 7 (MNIST test
set) and digit 3 (PRINT test set) are displayed as examples. The Cd value (pixel)
is labeled at the corner of each frame.
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of human perception. As for the PSNR, the E method scores
higher than the F method on every test target and performs
about 10% better numerically.
As for the generalization, see Section 3 of the Supplementary

Material for discussions about target movement and
Visualization 2 for the possibility of applying event-based
NLOS imaging in real-world circumstances.

5. Conclusion

In summary, we leverage the sampling specialty of an event cam-
era and propose a new detection and reconstruction method for
passive NLOS imaging. The E method extracts rich dynamic
information from the diffusion spot movements and provides
a physical foundation for passive NLOS imaging of moving
targets. Compared with the deep-learning approach with a tradi-
tional camera, the event-based framework shows better perfor-
mance when reconstructing NLOSmoving targets. We carry out
experiments on two types of targets with different distribution
forms and verify that the reconstruction quality is significantly
improved with the framework we addressed in both visual accu-
racy and position accuracy. The reconstruction quality on the
PRINT test set indicates that our method has extracted more
movement information on moving targets with the event detec-
tion paradigm compared with traditional frame-based detection.
We believe that the event approach for the inverse problem,
together with the EM-NLOS data set, is a big step and can inspire
new ideas toward the development of feature-embedded passive
NLOS imaging with multidetector information fusion[12] and

Fig. 8. Cd value of NLOS reconstructions at different positions. (a), (b) are the
Cd values of reconstructions shown in Fig. 7 (digit 7 and digit 3, respectively).

Fig. 9. Evaluation metrics LPIPS and PSNR for reconstructions of digit 7
(MNIST test) and digit 3 (PRINT test) at 10 different positions, respectively.
The full line denotes the E method, while the dotted line denotes frame-based
ones.

Table 1. Evaluation Metrics of Results with E Method and F Methoda.

Digit

PSNR/dB (↑) LPIPS (↓)

MNIST test PRINT test MNIST test PRINT test

E (ours) F E (ours) F E (ours) F E (ours) F

0 17.98 17.02 18.25 16.67 0.063 0.088 0.068 0.084

1 29.24 26.57 21.97 18.66 0.014 0.036 0.071 0.083

2 19.09 19.04 17.29 15.96 0.065 0.092 0.085 0.087

3 19.01 16.48 19.83 16.42 0.063 0.129 0.075 0.099

4 19.33 18.13 17.58 15.36 0.067 0.076 0.101 0.114

5 20.84 19.56 17.42 15.96 0.056 0.075 0.082 0.090

6 20.48 19.64 16.41 14.63 0.049 0.070 0.101 0.106

7 20.50 17.22 17.78 17.26 0.042 0.106 0.081 0.086

8 19.66 18.47 17.23 15.04 0.047 0.086 0.088 0.095

9 19.53 16.86 17.35 17.17 0.057 0.085 0.084 0.086

Avg. 20.57 18.90 18.11 16.32 0.052 0.084 0.083 0.093

aThe average LPIPS and PSNR of each reconstructed frame for 10 digits are compared. An improvement above 10% in PSNR and above 15% in LPIPS is in bold.
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NLOS target tracking[28]. The event cues we demonstrated fuse
the event paradigm information of NLOS moving target with
end-to-end data-driven methods for solving the event-based
inverse problem. In future work, we will take target movements
and environment disturbance into consideration, and continu-
ally put forward the applications of event-based cues in practice
by providing enhancement for methods based on other dimen-
sions of the light field. The event-based vision utilized in this
work has great potential to facilitate further research on fea-
ture-embedded passive NLOS and its applications.
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